Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Acquisition Time' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Acquisition Time' found in 3 terms [] and 20 definitions []
previous     16 - 20 (of 23)     next
Result Pages : [1]  [2 3 4 5]
Searchterm 'Acquisition Time' was also found in the following service: 
spacer
News  (6)  
 
Partial Fourier Imaging
 
Reconstruction of an image from a MR data set comprising an asymmetric sampling of k-space. For example, it can be used either to shorten image acquisition time, by reducing the number of phase encoding steps required, or to shorten the echo time, TE, by moving the echo off-center in the acquisition window. In either case the signal to noise ratio is reduced and the resolution can be improved to correspond to the maximum available resolution in the data.
spacer
MRI Resources 
Distributors - General - Safety Products - Spectroscopy - Non-English - Case Studies
 
Phase Conjugate Symmetry
 
The phase conjugate symmetry benefits from the symmetry (see also Hermitian symmetry) of the raw data in k-space and is used to reduce the data acquisition time by acquiring only a part of k-space data.

See also Partial Fourier Technique, Partial Averaging and acronyms for 'phase conjugate symmetry' from different manufacturers.
spacer

• View the DATABASE results for 'Phase Conjugate Symmetry' (3).Open this link in a new window

MRI Resources 
MRI Technician and Technologist Career - Absorption and Emission - Open Directory Project - Colonography - Supplies - Functional MRI
 
Relaxation Effect
 
The relaxation effect is the transition of an atom or molecule from a higher energy level to a lower one. The return of the excited proton from the high energy to the low energy level is associated with the loss of energy to the surrounding tissue. The T1 and T2 relaxation times define the way that the protons return to their resting levels after the initial radio frequency (RF) pulse. The T1 and T2 relaxation rates have an effect of the signal to noise ratio (SNR) of MR images.
The relaxation process is a result of both T1 and T2, and can be controlled by the dependency of one of the two biological parameters T1 and T2 in the recorded signal. A T1 weighted spin echo sequence is based on a short repetition time (TR) and a change of it will affect the acquisition time and the T1 weighting of the image. Increased TR results in improved SNR caused by longer recovering time for the longitudinal magnetization. Increased TE improves the T2 weighting, combined with a long TR (of several T1 times) to minimize the T1 effect.
spacer

• View the DATABASE results for 'Relaxation Effect' (2).Open this link in a new window

 
Further Reading:
  News & More:
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
Searchterm 'Acquisition Time' was also found in the following service: 
spacer
News  (6)  
 
Scan TimeForum -
related threads
 
(SCT) The total scan time is the time required to collect all data needed to generate the programmed images. The scan time is related to the used pulse sequence and dependent on the assemble of parameters like e.g., repetition time (TR), Matrix, number of signal averages (NSA), TSE- or EPI factor and flip angle.
For example, the total scan time for a standard spin echo or gradient echo sequence is number of repetitions x the scan time per repetition (means the product of repetition time (TR), number of phase encoding steps, and NSA).

See also Number of Excitations, Turbo Spin Echo Turbo Factor, Echo Planar Imaging Factor, Flip Angle and Image Acquisition Time.

See also acronyms for 'scan time parameters' from different manufacturers.
spacer

• View the DATABASE results for 'Scan Time' (47).Open this link in a new window


• View the NEWS results for 'Scan Time' (10).Open this link in a new window.
 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging
Tuesday, 28 June 2011   by scienceline.org    
Clinical evaluation of a speed optimized T2 weighted fast spin echo sequence at 3.0 T using variable flip angle refocusing, half-Fourier acquisition and parallel imaging
Wednesday, 25 October 2006
MRI Resources 
Safety Products - Resources - MRI Centers - Jobs - Cochlear Implant - Safety Training
 
Simultaneous Acquisition of Spatial Harmonics
 
(SMASH) Several lines of data are acquired for each phase encoding step, which is also referred to as a k-space trajectory.
SMASH imaging with a four-element array coil is four times faster and can be used to achieve almost real-time imaging. The maximum reduction in acquisition time is determined by the number of array coil elements. Thus, the heart can be scanned with higher temporal resolution and increased spatial resolution.
SMASH and SENSE differ from other techniques in which only one line of k-space data is acquired for each phase encoding gradient step.

See Sensitivity encoding.
spacer

• View the DATABASE results for 'Simultaneous Acquisition of Spatial Harmonics' (3).Open this link in a new window

MRI Resources 
Sequences - PACS - Functional MRI - Pediatric and Fetal MRI - Cochlear Implant - Case Studies
 
previous      16 - 20 (of 23)     next
Result Pages : [1]  [2 3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 1 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]